Ученые нашли ключ к масштабированию квантовых компьютеров


Главное препятствие на этом пути — особенности работы квантовых процессоров. При температурах, близких к абсолютному нулю, соединения между чипами должны оставаться сверхпроводящими, передавать сигналы без потерь и не вносить шум, который разрушает квантовые состояния. По мере роста числа кубитов и управляющих линий прокладывать надежные соединения становится всё сложнее.
Чтобы обойти это ограничение, учёные из Университета МИСИС, МГУ имени М.В. Ломоносова, Российского квантового центра, Центра нанофабрикации СП «Квант» и парижской Высшей школы промышленной физики и химии (ESPCI-Paris) исследовали и усовершенствовали технологию flip-chip.
«Разработанная теоретическая модель показала, что при совпадении частот резонаторов можно полностью передавать неклассические квантовые состояния с одного чипа на другой, что важно для построения квантовых сетей», — отметил д.т.н. Николай Клёнов, доцент кафедры атомной физики, физики плазмы и микроэлектроники МГУ.
Flip-chip технология применяется в классической микроэлектронике и позволяет размещать чипы друг над другом, соединяя их миниатюрными сверхпроводящими микростолбиками. Такой подход сокращает длину соединений, увеличивает плотность компонентов и упрощает компоновку. Разработанные соединения стабильно работают при температурах около 20 мК, не нарушая хрупкие квантовые состояния.
«Для соединения чипов мы создали и испытали индиевые соединительные элементы с многослойным металлическим фундаментом (Al/Ti/Pt/In), которые обеспечивают стабильную связь в условиях, когда температура многократно существенно меняется. Особое внимание было уделено предотвращению образования нежелательных интерметаллических соединений на границе алюминий-индий, которые могут ухудшать работу кубитов», — пояснил д.ф.-м.н. Игорь Соловьёв, ведущий научный сотрудник отдела микроэлектроники НИИЯФ МГУ.
Исследователи подробно изучили три способа связи между квантовым чипом (Q-chip) и управляющим чипом
Результаты исследования открывают перспективы для создания модульных квантовых процессоров и внутренних квантовых сетей. Следующий этап — интеграция реальных кубитов с управляющей электроникой и высокоточная передача квантовой информации. В перспективе вычислительные мощности таких процессоров потребуются для разработки новых лекарств и материалов, в криптографии, финансовом моделировании, прогнозировании климата и оптимизации инфраструктурных систем.
Технология разработана при поддержке Госкорпорации «Росатом» в рамках Дорожной карты «Квантовые вычисления» (договор № 868-1.3-15/15-2021 от 05.10.2021). Экспериментальные исследования устройства выполнены в НИТУ МИСИС в рамках стратегического технологического проекта «Квантовый интернет» по программе Минобрнауки России «Приоритет-2030».
Технологии
Пресс-служба НИТУ МИСИС