Превратить тепло в электричество: ученые создали эффективный генератор
Термоэлектрический генератор представляет собой устройство, которое переводит тепловую энергию в электрическую, что очень актуально, особенно в связи с мировым трендом на декарбонизацию. Исследователи Политехнического университета разработали концепцию создания такого генератора, содержащего в основе сложную углеродную наноструктуру, внутри которой при нагревании происходят квантовые электродинамические процессы, запускающие термоэлектрическую генерацию.
«Мы нагреваем структуру, которая создаётся определенным образом и имеет сложную стехиометрию. В такой структуре при нагреве запускаются процессы взаимодействия электронной подсистемы и структурной подсистемы (решётки). В результате созданная нами углеродная наноструктура начинает генерацию электронов. В результате такого квантово-физического взаимодействия при термическом воздействии возникает электрический ток», – отмечает Ольга Квашенкина, директор НТЦ «Нейропрогнозирование материалов и технологий электронной промышленности» (НЦМУ СПбПУ «Передовые цифровые технологии»).
Научный коллектив завершил теоретические изыскания, связанные с эффективностью устройства. Ученые построили цифровую модель и провели испытания также в «цифре», что значительно сократило время на разработку технологии. Затем результаты моделирования были проверены в ходе экспериментов, реализованных посредством атомно-силовых микроскопов, различных типов спектрометров и созданного специально для этой разработки комплекса исследовательского оборудования. Сейчас проект находится на стадии прототипирования в «железе». Устройство очень малогабаритное, в корпусной сборке будет иметь небольшие размеры (5*2 миллиметров, 1 миллиметр в высоту).
«Использование термоэлектрического генератора актуально не только для бытовых нужд, но и для промышленности. Например, устройство помещается на поверхность турбинного двигателя, который может нагревается до полутора тысяч градусов, и это тепло, переходя в электрическую энергию, и питает датчики, предназначенные для мониторинга состояния систем этого двигателя. Что касается бытового применения, сейчас мы работаем над тем, чтобы устройство смогло заряжать приборы с малой энергоёмкостью – электронные часы, светильники, системы полива комнатных растений и тому подобные девайсы. В дальнейшей перспективе будем стремиться к формату портативных термоэлектрических зарядок для мобильных телефонов», - рассказывает Ольга Квашенкина.
Устройство отличается высоким КПД – для выработки тока, достаточного для зарядки бытовых приборов, хватает нагрева от системы центрального отопления. Предполагается, что термоэлектрический генератор устанавливается около батареи или монтируется в систему отопления, и получаемая электроэнергия идет к электрической разводке и заряжает небольшие приборы. Благодаря малым габаритам устройство может быть переносным. Одним из ключевых моментов является безопасность этой системы как для пользователя, так и для электронного оборудования, которое подключается к этому устройству.
В настоящий момент система спроектирована, в том числе для работы в режиме очень высоких температур, поскольку созданная учеными углеродная наноструктура крайне термоустойчива. Это является несомненным плюсом для применения устройства в промышленности. Кроме того, для промышленного применения устройства предполагается использование тугоплавких проводников и тугоплавкого корпуса. Что касается бытовой эксплуатации, то для генерации электричества устройству будет достаточно температуры комнатных батарей. То есть в данном случае особых требований к материалам для корпуса предъявляться не будет, следовательно, устройство возможно будет сделать финансово доступным для обычных потребителей.
Сейчас ученые готовят два патента на изобретения.
Технологии
СПбПУ