Российские ученые помогли нейросети лучше ориентироваться в пространстве
- ВКонтакте
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- Telegram


Авторы исследования предложили новый метод формирования функции вознаграждения с учетом специфики однократного получения вознаграждения после полного решения проблемы. Он основывается на дополнительных вторичных вознаграждениях — шейпинге вознаграждения. Ученые применили два способа улучшения техники, которую в 2020 году предложили канадские ученые из Макгиллского университета. Первый использует продвинутые агрегирующие функции, а второй — механизм внимания. Продвинутые агрегирующие функции учитывают, в каком порядке и что видит нейросеть.
Исследователи провели серию экспериментов с поэтапным вознаграждением. Для них использовали две задачи на ориентацию в виртуальных пространствах — «4 комнаты», где нейросеть учиться параллельно в 16 пространствах, совершая 5 миллионов действий, чтобы найти ящик, и «Лабиринт», который каждый раз генерируется случайным образом, и для успешного обучения модели требуется пройти 20 миллионов шагов, чтобы найти выход. Ученые выяснили, что при формировании функции вознаграждения на основе механизма внимания, агент обучается фокусировке на ребрах графа, соответствующих важным переходам в трехмерной среде — тем, при которых цель попадает в поле зрения агента. Это до 15% повышает эффективность работы нейросетей. Подробности эксперимента опубликованы в журнале IEEE Access (Q1).
«Нам важно было оптимизировать процесс обучения именно для графовых нейронных сетей. Граф нельзя наблюдать целиком напрямую, но для эффективного обучения графовой нейронной сети достаточно рассматривать его части. Их можно наблюдать в виде отдельных траекторий перемещения агента. Таким образом, для обучения необязательны все варианты траекторий. Применение механизма внимания — перспективное решение, поскольку оно существенно ускоряет процесс обучения. Ускорение происходит за счет учета структуры графа процесса Маркова, что недоступно неграфовым нейросетям», — рассказывает Илья Макаров, PhD, директор Центра искусственного интеллекта НИТУ МИСИС, руководитель группы «ИИ в промышленности» Института AIRI.
Технологии
Пресс-служба НИТУ МИСИС