мы можем подготовить востребованных специалистов
Политех – это пространство творчества, где рождаются личности
Пермский национальный исследовательский политехнический университет
Все записи
текст

Ученые Пермского Политеха повысили эффективность работы ионного двигателя

Орбитальные спутники помогают исследовать другие планеты, проводить научные эксперименты, отслеживать изменения климата и природные катаклизмы, а также обеспечивать Землю связью. Для управления их ориентацией и положением в космическом пространстве применяют ионный двигатель. Он создает реактивную тягу, позволяющую аппарату подниматься в небо, а ключевую роль в этом процессе играют электроды – тонкие круглые перфорированные пластины. При выводе объекта на околоземную орбиту они могут соударяться из-за воздействующей вибрации, что в дальнейшем ведет к их разрушению и влияет на работу двигателя.
Ученые Пермского Политеха повысили эффективность работы ионного двигателя


Ученые Пермского Политеха разработали математическую модель и с ее помощью проанализировали, как повреждаемость материала влияет на прочность и величину амплитуды колебаний электродов. Это поможет доработать отечественную конструкцию двигателя на этапе проектирования и не допустить разрушений.
Исследование вносит вклад в развитие российской космической отрасли.

Чем выше удельный импульс двигателя, тем больше полезного груза при том же количестве топлива может вынести объект. Этот показатель наиболее высок у ионного двигателя, который используют для орбитальных спутников в качестве основного движителя для малых космических роботов, кораблей и станций.

Такой тип разгоняет ионы до скорости в десять раз выше, чем это могут сделать современные химические двигатели. Например, автоматическая межпланетная станция Dawn (запущена в 2007 году НАСА) стала одной из самых энергоэффективных за всю историю космонавтики, для ее полета было необходимо всего 3,25 мг топлива в секунду, при этом она установила рекорд скорости, разогнавшись до 39 900 км/час (11,1 км/с). Сейчас в России активно ведут работы по конструированию отечественных космических аппаратов с аналогичной технологией.

Принцип работы ионного двигателя заключается в ионизации газа, который разгоняется электростатическим полем для получения реактивной тяги и разгона космического корабля. В газоразрядную камеру подается топливо (газ), затем туда запускают высокоэнергетические электроны. Так образуется смесь из положительно заряженных ионов и отрицательных электронов. Ионы извлекаются системой, в общем случае состоящей из двух электродов. В результате ускоренный электростатическими силами пучок ионов создает тягу.

Электроды ионного двигателя представляют собой пластины, изготовленные из углерод-углеродного композиционного материала. Их малая толщина может привести к повреждению материала и снижению упругих характеристик в результате случайных вибраций, которые возникают при выводе космического аппарата на орбиту. В это время пары электродов соударяются, что в итоге приводит к их разрушению. Если рассмотреть этот процесс на уровне структуры (зерен) материала, то даже при невысоких напряжениях, в том числе вибрациях, зерна испытывают повреждения, а их свойства изменяются, что негативно сказывается на состоянии композита в целом.

Ученые Пермского Политеха разработали математическую модель, которая позволяет изучить изменения структуры материала электродов при возникающих во время полета космического аппарата нагрузках. Это поможет доработать ионно-оптическую систему электродов ионного двигателя на этапе проектирования, чтобы избежать разрушения в дальнейшем.

– Для анализа повреждаемости материала электродов и прогнозирования влияния деградации упругих свойств на амплитуду колебаний мы создали двухуровневую расчетную модель. Первый уровень позволяет найти вероятности повреждений зерен и их объемные доли, а затем перерасчитать упругие свойства композита. На втором компьютерная модель электрода нагружается и определяются поля распределения макронапряжений и макродеформаций. На каждом шаге решения идет обмен информацией между этими уровнями и становится видно, как в зависимости от накопленных повреждений изменяются свойства материала. Исследование демонстрирует, что моделирование структуры необходимо для прогнозирования его поведения на макроуровне, – комментирует Егор Разумовский, аспирант кафедры «Механика композиционных материалов и конструкций» ПНИПУ.

После перерасчета в областях изменения упругих свойств материала электрода показатель макронапряжений упал на 9,54 %. Однако площадь распространения областей с возможными повреждениями выросла на 8,1%. Политехники сравнили полученные данные с результатами неповрежденного электрода и обнаружили, что из-за снижения жесткости электродов амплитуда перемещений увеличивается. Это, в конечном счете, и приводит к их разрушению. Для правильного проектирования необходимо учитывать свойства материала на уровне зерен.

– При построении графика мы определили, что изменение амплитуды перемещений центральной точки электрода для двухуровневой модели составило 6,781% или 0,153 мм. Такое отклонение является существенной величиной по причине малого зазора между электродами. Превышение величины с учетом отклонения приведет к их соударению и разрушению. Это показывает важность прикладного применения разработанной теории и ее валидацию с реальными конструкциями, – комментирует Вячеслав Шавшуков, доцент кафедры «Механика композиционных материалов и конструкций» ПНИПУ, кандидат физико-математических наук.

Исследование ученых Пермского Политеха позволит доработать конструкцию отечественного ионного двигателя на этапе проектирования и снизить риск разрушения электродов во время работы космических роботов, кораблей и станций.

Статья опубликована в журнале «Вестник ПНИПУ. Аэрокосмическая техника» за 2024 год.

Фото: NASA, commons.wikimedia.org

Наука

Машины и Механизмы
Всего 0 комментариев
Комментарии

Рекомендуем

OK OK OK OK OK OK OK