Разработка ученых ПФИЦ УрО РАН и Пермского Политеха улучшит контроль качества оптоволокна


Заготовку для оптоволокна создают из чистого стекла и добавляют различные примеси, которые улучшают показатели преломления света и параметры люминесценции (свечения), обычно это оксиды германия, алюминия или эрбия. Затем ее нагревают и медленно вытягивают в тонкую нить – это и есть оптическое волокно, толщина которого обычно составляет около 125 микрометров (примерно, как человеческий волос). После нанесения защитного полимерного покрытия диаметр типового волокна составляет 250 микрометров.
Все его основные характеристики полностью наследуются от изначально созданной заготовки. Поэтому при проверке качества строго определяют ее оптические, люминесцентные и геометрические параметры — то есть форму, диаметр, профили показателя преломления света, а также однородность распределения добавок по длине и сечениям заготовки. Для этого с помощью специальных лазеров, сканеров и других высокоточных приборов необходимо отдельно измерять каждый показатель, что сильно замедляет производство. Также в данном процессе нередко используют опасные синтетические масла, легко воспламеняемые и ядовитые для человека.
Ученые ПФИЦ УрО РАН и Пермского Политеха предложили подход, объединяющий несколько измерений в одну процедуру. Для этого они разработали автоматизированный лабораторный стенд, который одновременно изучает ключевые свойства материала с помощью света и различных датчиков. Разработка устраняет ограничения традиционных методов и значительно ускоряет процесс контроля качества.
Система работает следующим образом: в измерительный стенд горизонтально встраивается заготовка оптоволокна (от 10 см до 1,5 м), которая в процессе постепенно перемещается вдоль направляющей, около нее перемещаются и специальные детекторы. Излучение инфракрасного лазерного диода направляется в образец и благодаря эффекту люминесценции визуализирует места скопления активного редкоземельного металла, например, эрбия, а инфракрасный фотодетектор улавливает этот свет и регистрирует его по всей длине образца. Также в тестовом режиме в системе были опробованы методы оценки показателя преломления и геометрических параметров при помощи камеры и белого светодиода.
Для оценки преломления света разработчики предложили удобный способ с использованием простого источника белого света. Отразившись от специальной поверхности и пройдя через заготовку, он проецирует на матрицу фотоэлементов последовательность областей с разной цветовой информацией (наподобие QR-кода), а встроенный алгоритм обрабатывает полученные данные и сравнивает с параметрами эталонного (идеального) образца. Это помогает быстро оценить, есть ли дефекты, и насколько заготовка получилась качественной.
В будущем ученые планируют улучшить систему, чтобы она могла измерять концентрацию и других элементов в заготовках и восстанавливать полный профиль показателя преломления с помощью искусственного интеллекта.
– На данный момент погрешность измерения концентрации редкоземельного металла в нашей системе не превышает 5%. Это важно, потому что от этого зависят свойства будущего продукта. Например, если в волокне слишком много эрбия, излучение будет быстро поглощаться, а если его недостаточно, эффективность лазера или усилителя, изготовленного при помощи этого волокна, будет также низкой из-за плохой люминесценции, – рассказывает Константин Латкин, ассистент кафедры общей физики ПНИПУ, младший научный сотрудник лаборатории фотоники ИМСС УрО РАН – филиала ПФИЦ УрО РАН.
Практика показала, что полученные данные позволяют гибко контролировать технологический процесс производства оптических волокон, а также экономить сырье, включающее в себя дорогостоящие редкоземельные металлы, сокращая при этом продолжительность технологического процесса,
– Новизна подхода заключается в работе «сухим» методом, то есть заготовка не погружается в токсичное синтетическое масло, что делает процесс менее трудоемким и безопасным, – добавляет Артем Туров, ассистент кафедры общей физики ПНИПУ, младший научный сотрудник лаборатории фотоники ИМСС УрО РАН – филиала ПФИЦ УрО РАН.
Артем Туров. Фото: пресс-служба ПНИПУ
Часть методов из исследования уже применяется промышленным партнером для контроля заготовок активных оптических волокон.
Разработка ученых позволяет комплексно определять сразу несколько ключевых параметров заготовок оптических волокон на одной установке. Полностью автоматизированный процесс обеспечивает быстроту, безопасность и точность системы, что значительно повысит надежность производства оптоволоконных технологий.
Статья с результатами опубликована в журнале «Optics», 2024 год.Наука
ПНИПУ