Доцент кафедры 602 «Проектирование и прочность авиационно-ракетных и космических изделий» Московского авиационного института (МАИ) и старший научный сотрудник Института прикладной механики Российской академии наук (ИПРИМ РАН) Сергей Владимирович Русских работает над докторской диссертацией, где предлагает инновационные решения важных фундаментально-прикладных задач в области линейной и нелинейной механики управляемых космических конструкций.
Главной задачей управления является подбор управляющего импульса. Ранее в работах известных учёных в области робототехники и космических систем предлагались подходы, основанные на разложении импульса по собственным частотам колебаний. Импульсы при этом получались высокочастотными и не удобными для практического применения. В комплексной работе Сергея Владимировича для различных систем предлагается несколько подходов.
Для линейных систем с постоянными параметрами используется разложение нестационарных движений по собственным формам колебаний (так называемое решение в нормальных координатах), полученные уравнения решаются аналитически точно. Управляющее воздействие ищется при этом в виде конечного ряда простых с точки зрения реализации финитных функций времени. Также для подобных систем, совершающих многократно однотипные операции, устранение колебаний в конце каждой операции с помощью одной «простой» заданной управляющей функции осуществляется за счёт «настройки» нескольких низших собственных частот колебаний системы на эту функцию путём варьирования параметров системы.
Для нелинейных систем или систем с переменными параметрами Сергей Владимирович впервые предложил подход, основанный на разложении обобщённых координат системы по заданным базисным функциям времени с неизвестными коэффициентами, которые определяются по методу Бубнова-Галёркина во временной области. Этот метод позволяет свести решение дифференциального уравнения к решению более простой математической проблемы. Управляющая функция на интервале управления при этом ищется в виде конечного ряда по синусам. Все обобщённые координаты необходимо разложить по известным заранее функциям времени с неизвестными коэффициентами. Перемещение раскладывается аналогично. Получается нелинейное алгебраическое уравнение, решив которое мы получим коэффициенты, которые определяют углы поворота и параметры управляющего воздействия. Благодаря этому методу будет происходить гашение колебания не только с точки зрения перемещения, но и скорости.
«Эту фундаментальную работу отличает её практикоориентированность. Это оригинальные и новые методы, которые достаточно просты, чтобы было легко реализовать их на практике», – отмечает учёный.К данной разработке уже проявили интерес предприятия, которые занимаются вопросами производства и эксплуатации соответствующей техники. Особенную практическую пользу методов маёвца отметил Ракетно-космический центр «Прогресс».
Это новость от журнала ММ «Машины и механизмы». Не знаете такого? Приглашаем прямо сейчас познакомиться с этим удивительным журналом.