Геомеханическое моделирование широко используется при строительстве и разработке нефтяных месторождений. Оно позволяет точнее подобрать необходимое оборудование для вскрытия пласта, определить его интервал, оптимальную траекторию ствола скважины, оценить устойчивость горной породы в процессе бурения и добычи. Все это важно для максимально эффективной разработки месторождений. Тем не менее, существующие аналитические решения часто дают неточные результаты, так как учитывают не все факторы.
Существующие модели оценки состояния прискважинной зоны пласта упрощены и не учитывают геометрию каналов перфорации. Это делает моделирование неточным, что может привести к ошибкам при проектировании и дальнейшей эксплуатации скважин.
Ученые Пермского Политеха разработали численную конечно-элементную модель, которая включает в себя обсадную колонну, цементный камень, нефтенасыщенные породы, а также учитывает геометрию перфорационных каналов. Ее особенностью является использование контактных элементов для оценки взаимодействия между обсадной колонной, цементным камнем и породой, что делает модель более реалистичной. Аналогов этой модели на практике нет. Она представляет собой совокупность уравнений, куда можно подставить необходимые данные и рассчитать распределение напряжений, оценить запас прочности и устойчивость крепи скважины и горных пород. Кроме того, с ее помощью возможно оценить влияние деформационных эффектов на проницаемость пласта.
– Сначала мы проверили работоспособность модели в программе ANSYS 19 на примере простой ситуации – открытой вертикальной скважины без учета перфораций, цемента и колонны. Это нужно было для того, чтобы удостовериться, что модель правильно описывает базовые физические процессы. Полученную производительность скважины сравнили с аналогичным расчетом по классической формуле, чтобы убедиться, что наша модель является статистически значимой и ее можно применять на практике. Расхождение оказалось незначительным – всего 3,8%, что считается хорошим результатом. Разница объясняется тем, что наша модель включает в себя дополнительные элементы – породу-коллектор, цементный камень, обсадную колонну и перфорационные каналы – чего не учитывают другие аналитические формулы. В будущем планируется сравнить модель с реальными данными, полученными на скважинах, – рассказывает Сергей Попов, заведующий лабораторией института проблем нефти и газа РАН, доктор технических наук.
– Модель позволяет вычислить то, насколько околоскважинная зона и элементы крепи способны выдерживать оказываемую на них нагрузку. Так, наши расчеты показали, что запас прочности цементного камня составляет 2-3 единицы, а коэффициент запаса прочности обсадной колонны – 3-4 единицы, что говорит о высокой степени устойчивости. Наиболее слабой зоной является область рядом с перфорационными каналами, поскольку именно здесь возникают области разрушения как от растягивающих, так и от сжимающих нагрузок, – рассказывает Сергей Чернышов, заведующий кафедрой «Нефтегазовые технологии» ПНИПУ, доктор технических наук.
Разработанная учеными Пермского Политеха математическая модель позволяет значительно улучшить точность расчетов напряженно-деформированного состояния околоскважинной зоны с учетом элементов крепи скважины. Более точное моделирование может предупредить проблемы, связанные со снижением продуктивности скважины, и обеспечить ее эффективную работу.
Статья опубликована в журнале «Applied Sciences», том 14, №21, 2024.
Это новость от журнала ММ «Машины и механизмы». Не знаете такого? Приглашаем прямо сейчас познакомиться с этим удивительным журналом.