Как хобби привело к научному прорыву

Казалось бы, все уже доказано, объяснено, найдено... А нет!  На самом деле наш мир - это бескрайний простор знаний, поиск которых может длиться вечно... 

Но самое интересное другое..., что нередко открытия совершают обычные люди, не не претендующие на  звание великих ученых, а просто увлеченные своим хобби. 


Например, один неизвестный математик совершил прорыв в теории простых чисел-близнецов! Неизвестный -  доцент университета Нью-Гэмпшира Итан Чжан (Yitang Zhang). Ему за 50, и он до сих пор не имеет ни должности профессора, ни веб-странички со списком научных работ. Тем не менее, ему удалось совершить серьёзный шаг к решению одной из старейших математических проблем — гипотезе о простых числах-близнецах.

 


Вообще, в  математике чрезвычайно редко случается, чтобы учёный старше 40 лет опубликовал первую серьёзную научную работу. Ещё реже бывает, чтобы эта работа имела большую научную ценность. Именно такой редчайший случай представляет из себя работа Итана. Итан Чжан преподаёт алгебраическую геометрию в университете, а теория чисел была его хобби. Как обычно, математики часто увлекаются простыми числами как одной из самых интересных загадок в этой области науки. 

 

Итан Чжан доказал, что существует бесконечно большое количество простых чисел, расстояние между которыми не превышает 70 миллионов. Эти пары будут встречаться всё реже и реже, но не исчезнут никогда, несмотря на действие теоремы о среднем расстоянии между простыми числами в 2,3 × N, где N — количество разрядов.

 

Другими словами, среднее расстояние между числами будет приближаться к бесконечности, по мере роста количества разрядов, но при этом всегда будут встречаться простые числа, удалённые друг от друга не более чем на 70 млн, что просто удивительно.


В оригинальной версии гипотеза гласит, что существует бесконечное количество простых чисел-близнецов. Это предположение до сих пор никто не доказал и не опроверг. Самыми большими найденными простыми числами-близнецами, известными науке, являются 3756801695685 × 2666669 –  1 и 3756801695685 × 2666669 +  1.


Журнал “Annals of Mathematics” сначала воспринял научную работу Чжана скептически. Но, изучив ее, научные эксперты нашли доказательство гипотезы о расстоянии между парными простыми числами предельно ясным, чётким и бесспорным. В результате, журнал одобрил работу для публикации в исключительно короткие сроки — уже через три недели после поступления.

 


Решето Эратосфена — простой алгоритм нахождения всех простых чисел до некоторого целого числа n, путём вычёркивания всех чисел которые делятся на простой делитель: 2, 3, 5, 7 и т.д.

 

Это новость от журнала ММ «Машины и механизмы». Не знаете такого? Приглашаем прямо сейчас познакомиться с этим удивительным журналом.

Наш журнал ММ